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Abstract
We solve explicitly the crossing equation under sufficiently general assumptions
on the structure of the dressing phase. We obtain the BES/BHL dressing phase
as a minimal solution of the crossing equation and identify the possible CDD
factors.

PACS number: 11.25.Tq

1. Introduction

There is evidence that the spectral problem which appears in the context of the AdS/CFT
correspondence can be solved exactly under the assumption of integrability [1–3]. In analogy
with the bootstrap approach in the relativistic theories [4], an important object to identify is a
factorized scattering matrix [5]. The knowledge of the scattering matrix leads to the solution
of the spectral problem of the theory in a large volume in terms of the asymptotic Bethe Ansatz
proposed in [6, 7]. From the symmetries of the theory it is possible to fix the scattering matrix
up to a scalar factor [7, 8], also known as a dressing factor.

The necessity of the nontrivial dressing factor was first observed in [9]. Later it was shown
that it is constrained by the crossing equations [10]. A proposal for the logarithm of the scalar
factor, known as the BES/BHL dressing phase, was given in [11–13]. This proposal passed
many nontrivial checks. In particular, it has a correct strong coupling asymptotics which was
found at tree level [9] and at one loop [14–16] using the method of the algebraic curve solution
[17]. The conjectured dressing phase was an important ingredient for the so-called BES
equation [13, 18]. The solution of the BES equation at weak coupling [13] is in agreement
with explicit four-loop perturbative calculations in N = 4 SYM [19]. The strong coupling
solution of the BES equation [20, 21] is in agreement with a two-loop string prediction [22].
Now it is widely accepted that the BES/BHL dressing phase gives a correct scalar factor of
the AdS/CFT scattering matrix.
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Figure 1. The crossing A∗ and the mirror points B in the u-plane.

In integrable relativistic field theories the solution of the crossing equation is not unique.
The correct scalar factor is usually a ‘minimal’ solution of the crossing equation, i.e. the
solution with a minimal number of singularities in the physical strip [4]. All other solutions
of the crossing equation can be obtained via multiplication by the CDD factors.

In this paper, we argue that this is the case also for the AdS/CFT integrable system. We
explicitly solve the crossing equation and show that the ‘minimal’ solution coincides with the
BES/BHL dressing factor. We also comment on the possible form of the CDD factors.

2. Crossing relation at the mirror point

In the following, we will use the Jukowsky map x[u] defined by

x = u

2g

(
1 +

√
1 − 4g2

u2

)
,

u

g
= x +

1

x
. (1)

We introduce the following shorthand notations. By x, y and z we denote respectively the
images of u, v and w. We also denote x± ≡ x[u ± i/2] and y± ≡ x[v ± i/2]. We take the
branch of the Jukowsky map such that |x| > 1 if the opposite is not mentioned explicitly.

The crossing equation is formulated as follows [10, 24]:

σ [u, v]σ cross[u, v] = y−

y+

x− − y+

x+ − y+

1 − 1
x−y−

1 − 1
x+y−

, (2)

where σ [u, v] is a dressing factor and σ cross[u, v] is its crossing transform.
The dressing factor is a multivalued function of u and v. In the following, we will fix v

and consider σ as a function of u.
The crossing transformation acts as the analytical continuation of σ along the contour

AA∗ in the u-plane, depicted in figure 1, which encircles the branch points 2g ± i/2. As is
seen from (2), the dressing factor σ has a nontrivial monodromy along the contour AA∗.

It is possible to write the crossing equation as a periodicity condition using the elliptic
uniformization [10]. In terms of the elliptic variable s used in [23] and related to one in [10] by a
Gauss–Landen transformation, the crossing transformation is given by σ cross[s] = σ [s +2iK ′].
Since σ [s + 8iK ′] = σ [s], the branch points u = ±2g ± i/2 may be of the fourth or the second
order. We assume in the following that they are of square root type which is compatible with
the analytical structure of the Bethe Ansatz equations [6].

The dressing factor σ [u, v] can be represented in the following form [9, 24]:

σ [u, v] = eiθ[u,v], θ [u, v] = χ [x+, y−] − χ [x−, y−] − χ [x+, y+] + χ [x−, y+], (3)
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where χ [x, y] has the symmetry χ [x, y] = −χ [y, x]. To fix the solution of (2), we assume
that χ is an analytic single-valued function for |x| > 1. Since the Jukowsky map (1) resolves
the simple branch points of σ [u, v] at u = ±2g ± i/2, the function eiχ[x,y] is meromorphic in
the vicinity of the points x = ±1.

The crossing transformation acts on the functions x± by inverting them: x± → 1/x±.
Since χ [x, y] may not be single valued in the domain |x| < 1, the function σ cross will be
written in terms of the functions χ [1/x, y] defined on different Riemann sheets of the x-plane.
To avoid this problem we analytically continue the crossing equation (2) along the path A∗B
to the region with mirror kinematics. The crossing equation at the point B is written as

σA∗B[u, v]σAB[u, v] =
1 − 1

x+y+

1 − 1
x−y−

1 − 1
x−y+

1 − 1
x+y−

, (4)

where A∗B and AB denote the paths which were used for analytical continuation of σ [u, v].
The point B is not necessarily at the same position as the points A and A∗ in the u-plane.

The position of the point B can be chosen in such a way that AB and A∗B correspond to the
shifts of the s variable, s → s ± iK ′. These shifts relate the theory with its mirror [25].

In the following, we will use the functions σ1[x, v] and σ2[x, y] given by

σ1[x, v] = eiχ[x,y−]−iχ[x,y+], σ2[x, y] = eiχ[x,y]. (5)

Since the paths A∗B and AB cross only one simple branch cut, we are allowed to write1

σA∗B = σ1[x+, v]

σ1[1/x−, v]
, σAB = σ1[1/x+, v]

σ1[x−, v]
. (6)

Now all four functions σ1 which are used in (6) are on the same Riemann sheet of the x-plane.
For the further analysis, it will be convenient to write the crossing equation (4) in terms

of the shift operator

D ≡ e± i
2 ∂u : f [u] �→ f [u ± i/2], (7)

so that x+ = Dx and x− = D−1x. Namely, introducing the notation

f D±1 ≡ eD±1 log[f ], (8)

we can write (4) as

(σ1[x, v]σ1[1/x, v])D−D−1 =
(

x − 1
y+

x − 1
y−

)D+D−1

. (9)

The shift operator D is not well defined inside the strip |Re[u]| � 2g since we can cross the
cut of x[u] and go to another sheet. To avoid this ambiguity we will consider the crossing
equation (9) outside this strip, solve it, and then analytically continue the solution.

3. Solution

The function σ1[x, v]σ1[1/x, v] as a function of u does not have a branch cut [−2g, 2g]. A
solution of (9) with this property is given by

σ1[x, v]σ1[1/x, v] =
(

x − 1
y+

x − 1
y−

)− D2

1−D2 + D−2

1−D−2

, (10)

D±2

1 − D±2
= D±2 + D±4 + · · · .

1 Strictly speaking, we also have to demand absence of the branch points between the cuts |x−| = 1 and |x+| = 1.
This demand is analogous to the demand in relativistic field theories for the S-matrix to be meromorphic in terms of
the rapidity variable.
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Strictly speaking, this expression should be regularized to have a precise meaning. However,
the regulating terms will cancel for the complete dressing factor σ [u, v].

Expression (10) can be further simplified using the fact that σ1[x, v] =
σ2[x, y+]/σ2[x, y−]:

σ2[x, y]σ2[1/x, y] =
(

x − 1
y√

x

)− D2

1−D2 + D−2

1−D−2

. (11)

The multiplier 1/
√

x does not contribute to (10). It is needed for the consistency with the
antisymmetry of χ [x, y] with respect to the interchange x ↔ y. Indeed, a direct calculation
shows that

σ2[x, y]σ2[1/x, y]σ2[x, 1/y]σ2[1/x, 1/y] = (u − v)
− D2

1−D2 + D−2

1−D−2 = �[1 − i(u − v)]

�[1 + i(u − v)]
, (12)

whose logarithm is antisymmetric with respect to u ↔ v as it should be.
The ratio of gamma-functions resembles the solutions of the crossing equation in the

relativistic theories. Note that the typical dressing factor in the relativistic theories is given by

an expression of the type θ
− D2

1+D2 + D−2

1+D−2 [26], i.e. with the opposite sign in the denominator.
By taking the logarithm of (12), we get a simple Riemann–Hilbert problem which is

solved by

χ [x, y] = −iK̃uK̃v log

[
�[1 − i(u − v)]

�[1 + i(u − v)]

]
, (13)

with the kernel K̃ defined by

(K̃ · F)[u] =
∫ 2g+i0

−2g+i0

dw

2π i

x − 1
x

z − 1
z

1

w − u
F [w]. (14)

The kernel K̃ is constructed to satisfy the following equation2:

(K̃ · F)[u + i0] + (K̃ · F)[u − i0] = F [u], u2 < 4g2. (15)

The subscripts u and v in (13) refer to action of K̃ on u and v variables respectively.
The solution (13) was chosen among the other possible solutions by the requirements that

χ [x, y] should be analytic in the physical domain |x| > 1 and χ [x, y] → const, x → ∞.
Expression (13) can be rewritten in the form proposed by Dorey, Hofman and Maldacena

[28] if we rewrite the action of the kernel K̃ as an integral in the Jukowsky plane:

(K̃ · F)[u] =
∮

|z|=1

dz

2π i

1

x − z
F

[
g

(
z +

1

z

)]
+ const (16)

and note that the constant term does not contribute to the dressing phase. This kind of
transformation was discussed in [21].

Therefore, we see that the solution we obtained is nothing but the BES/BHL dressing
phase.

Solution (13) of the crossing equation is not unique. It can be thought of as a minimal
solution in the sense that we chose the solution with a minimal possible number of singularities.
The form of the CDD factors can be strongly constrained assuming the decomposition (3),
square root type of the branch points and the absence of branch points different from the ones

2 Interestingly, this equation appears for the resolvent of the Bethe roots condensate in the principal chiral field [27].
There its solution naturally leads to the AFS dressing phase.
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Figure 2. Analytical structure of σ2[x, y] as a function of u.

that are present in the BES/BHL dressing phase. Then the CDD factor should satisfy the
equation

(σ1,CDD[x, v]σ1,CDD[1/x, v])D−D−1 = 1. (17)

We see that the function fCDD[u] = σ1,CDD[x, v]σ1,CDD[1/x, v] should be periodic with
the period i. Since by construction fCDD[u] does not have a branch cut [−2g, 2g], due to
periodicity it cannot have other branch cuts as well. Therefore fCDD is a meromorphic function
of u and σ1,CDD[x, v] is a meromorphic function of x. As a consequence, all the branch points
of the dressing factor are resolved by introducing an elliptic parametrization. An arbitrary
CDD factor is therefore a meromorphic function on the torus which satisfies the condition

σCDD[s]σCDD[s + 2iK ′] = 1. (18)

4. Analytical structure

The investigation of the analytical structure of the solution (13) is based on the property (15).
It is instructive to write (13) as

−iχ = K̃u

(
D2

1 − D2
− D−2

1 − D−2

)
K̃v log[u − v]. (19)

Let us consider χ as a function of u. We will keep the notation χ to denote χ [x[u], y]
in the domain |x| > 1. In this domain χ is analytic everywhere except on the Jukowsky
cut |x| = 1. Crossing this cut will bring us to the other Riemann sheet. We will denote the
function χ on this sheet by χ ′. From (15) and (19) we deduce that

−iχ ′ = iχ +
∑
n
=0

sign[n]K̃v log[u − v + in]. (20)

We see that χ ′ has an infinite set of simple branch cuts given by the condition |x[u + in]| = 1.
By construction χ ′ is defined in the domain |x[u]| < 1 and |x[u + in]| > 1 for n 
= 0.
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Passing through one of the cuts |x[u + im]| = 1 with m 
= 0 brings us to yet a new
Riemann sheet which is defined by |x| < 1 and |x[u + im]| < 1. The corresponding function
χ

′′
m is given by

−iχ ′′
m = iχ ′ + sign[m] log

[
u − v + im

−y

]
. (21)

The second term on the rhs of (21) leads us to the DHM poles described in [28]. These poles
should be squared in the scattering matrix since the dressing factor contributes as σ 2.

The analytical properties of the dressing phase follow from the analytical properties of
the function χ and the decomposition (3). Note however that from the crossing equation (2) it
follows that on the Riemann sheet which contains the point A∗ the dressing phase should have
only two cuts |x±| = 1. The cancelations of the other cuts3 on this sheet between σ2[x+, y]
and σ2[x−, y] can be easily seen from (20).

The representation (19) is closely related to the representation for the dressing kernel in
[23, 29]. As is shown in [29], the dressing kernel can be nontrivially simplified at strong
coupling. The integral representation of the dressing kernel can also be obtained by an inverse
half-Fourier transform [21] of the dressing kernel of the BES equation [13].
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Note added. After the work on this project was already finished, the paper [30] appeared. In [30] it was shown that
the BES/BHL dressing phase satisfies the crossing relation (2). In contrast to [30], here we derive the dressing phase
in a constructive way. Also in [30] the analytic structure of the dressing phase as a function on the torus is discussed.
Here we present the analytic structure of the dressing phase as a function of u.

References

[1] Minahan J A and Zarembo K 2003 J. High Energy Phys. JHEP03(2003)013 (arXiv:hep-th/0212208)
[2] Bena I, Polchinski J and Roiban R 2004 Phys. Rev. D 69 046002 (arXiv:hep-th/0305116)
[3] Beisert N, Kristjansen C and Staudacher M 2003 Nucl. Phys. B 664 131 (arXiv:hep-th/0303060)
[4] Zamolodchikov A B and Zamolodchikov A B 1979 Ann. Phys. 120 253
[5] Staudacher M 2005 J. High Energy Phys. JHEP05(2005)054 (arXiv:hep-th/0412188)
[6] Beisert N and Staudacher M 2005 Nucl. Phys. B 727 1 (arXiv:hep-th/0504190)
[7] Beisert N 2008 Adv. Theor. Math. Phys. 12 945 (arXiv:hep-th/0511082)
[8] Arutyunov G, Frolov S and Zamaklar M 2007 J. High Energy Phys. JHEP04(2007)002 (arXiv:hep-th/0612229)
[9] Arutyunov G, Frolov S and Staudacher M 2004 J. High Energy Phys. JHEP10(2004)016

(arXiv:hep-th/0406256)
[10] Janik R A 2006 Phys. Rev. D 73 086006 (arXiv:hep-th/0603038)
[11] Beisert N 2007 Mod. Phys. Lett. A 22 415 (arXiv:hep-th/0606214)
[12] Beisert N, Hernandez R and Lopez E 2006 J. High Energy Phys. JHEP11(2006)070 (arXiv:hep-th/0609044)
[13] Beisert N, Eden B and Staudacher M 2007 J. Stat. Mech. P01021 (arXiv:hep-th/0610251)
[14] Beisert N and Tseytlin A A 2005 Phys. Lett. B 629 102 (arXiv:hep-th/0509084)
[15] Hernandez R and Lopez E 2006 J. High Energy Phys. JHEP07(2006)004 (arXiv:hep-th/0603204)
[16] Gromov N and Vieira P 2008 Nucl. Phys. B 790 72 (arXiv:hep-th/0703266)
[17] Kazakov V A, Marshakov A, Minahan J A and Zarembo K 2004 J. High Energy Phys. JHEP05(2004)024

(arXiv:hep-th/0402207)
[18] Eden B and Staudacher M 2006 J. Stat. Mech. P11014 (arXiv:hep-th/0603157)

3 These cancelations were also independently observed by N Gromov and P Vieira.

6

http://dx.doi.org/10.1088/1126-6708/2003/03/013
http://www.arxiv.org/abs/hep-th/0212208
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://www.arxiv.org/abs/hep-th/0305116
http://dx.doi.org/10.1016/S0550-3213(03)00406-1
http://www.arxiv.org/abs/hep-th/0303060
http://dx.doi.org/10.1016/0003-4916(79)90391-9
http://dx.doi.org/10.1088/1126-6708/2005/05/054
http://www.arxiv.org/abs/hep-th/0412188
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.038
http://www.arxiv.org/abs/hep-th/0504190
http://www.arxiv.org/abs/hep-th/0511082
http://dx.doi.org/10.1088/1126-6708/2007/04/002
http://www.arxiv.org/abs/hep-th/0612229
http://dx.doi.org/10.1088/1126-6708/2004/10/016
http://www.arxiv.org/abs/hep-th/0406256
http://dx.doi.org/10.1103/PhysRevD.73.086006
http://www.arxiv.org/abs/hep-th/0603038
http://dx.doi.org/10.1142/S0217732307022785
http://www.arxiv.org/abs/hep-th/0606214
http://dx.doi.org/10.1088/1126-6708/2006/11/070
http://www.arxiv.org/abs/hep-th/0609044
http://www.arxiv.org/abs/hep-th/0610251
http://dx.doi.org/10.1016/j.physletb.2005.09.054
http://www.arxiv.org/abs/hep-th/0509084
http://dx.doi.org/10.1088/1126-6708/2006/07/004
http://www.arxiv.org/abs/hep-th/0603204
http://dx.doi.org/10.1016/j.nuclphysb.2007.08.019
http://www.arxiv.org/abs/hep-th/0703266
http://dx.doi.org/10.1088/1126-6708/2004/05/024
http://www.arxiv.org/abs/hep-th/0402207
http://www.arxiv.org/abs/hep-th/0603157


J. Phys. A: Math. Theor. 42 (2009) 372001 Fast Track Communication

[19] Bern Z, Czakon M, Dixon L J, Kosower D A and Smirnov V A 2007 Phys. Rev. D 75 085010
(arXiv:hep-th/0610248)

[20] Basso B, Korchemsky G P and Kotanski J 2008 Phys. Rev. Lett. 100 091601 (arXiv:0708.3933 [hep-th])
[21] Kostov I, Serban D and Volin D 2008 J. High Energy Phys. JHEP08(2008)101 (arXiv:0801.2542 [hep-th])
[22] Roiban R and Tseytlin A A 2007 J. High Energy Phys. JHEP11(2007)016 (arXiv:0709.0681 [hep-th])
[23] Kostov I, Serban D and Volin D 2008 Nucl. Phys. B 789 413 (arXiv:hep-th/0703031)
[24] Arutyunov G and Frolov S 2006 Phys. Lett. B 639 378 (arXiv:hep-th/0604043)
[25] Arutyunov G and Frolov S 2007 J. High Energy Phys. JHEP12(2007)024 (arXiv:0710.1568 [hep-th])
[26] Volin D 2009 arXiv:0904.2744 [hep-th]
[27] Gromov N and Kazakov V 2007 Nucl. Phys. B 780 143 (arXiv:hep-th/0605026)
[28] Dorey N, Hofman D M and Maldacena J M 2007 Phys. Rev. D 76 025011 (arXiv:hep-th/0703104)
[29] Volin D 2008 arXiv:0812.4407 [hep-th]
[30] Arutyunov G and Frolov S 2009 arXiv:0904.4575 [hep-th]

7

http://dx.doi.org/10.1103/PhysRevD.75.085010
http://www.arxiv.org/abs/hep-th/0610248
http://dx.doi.org/10.1103/PhysRevLett.100.091601
http://www.arxiv.org/abs/0708.3933 [hep-th]
http://dx.doi.org/10.1088/1126-6708/2008/08/101
http://www.arxiv.org/abs/0801.2542 [hep-th]
http://dx.doi.org/10.1088/1126-6708/2007/11/016
http://www.arxiv.org/abs/0709.0681 [hep-th]
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.017
http://www.arxiv.org/abs/hep-th/0703031
http://dx.doi.org/10.1016/j.physletb.2006.06.064
http://www.arxiv.org/abs/hep-th/0604043
http://dx.doi.org/10.1088/1126-6708/2007/12/024
http://www.arxiv.org/abs/0710.1568 [hep-th]
http://www.arxiv.org/abs/0904.2744
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.025
http://www.arxiv.org/abs/hep-th/0605026
http://dx.doi.org/10.1103/PhysRevD.76.025011
http://www.arxiv.org/abs/hep-th/0703104
http://www.arxiv.org/abs/0812.4407
http://www.arxiv.org/abs/0904.4575

	1. Introduction
	2. Crossing relation at the mirror point
	3. Solution
	4. Analytical structure
	Acknowledgments
	References

